Tree Density Estimation Using a
Distance Method in Mali Savanna
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ABSTRACT. The biological characteristics of trees in tropical dry savannas make it difficult
to conduct inventories of tree density, and this has aroused interest in distance-based
methods. This study proposes a distance-based tree density estimator using Matérn point
processes, generating clustered spatial patterns. It was defined as the maximum likelihocod
estimator of the density, based on an approximate distribution of the distance from a
random point to the pth nearest tree. It was compared with seven estimators identified in the
literature as the most efficient. The estimators were compared on a benchmark of 10 point
processes, with six being adjusted to observed tree patterns in six Mali savannas {West
Africal. The proposed estimator was generally the most efficient. However, this result
ignores that (i} all estimators do not require the same effort on the field, (ii} the
point-processes benchmark was restricted to Matérn processes, and (iii) all estimators are
not equivalent with respect to measurement errors. FOR. Scl. {):.
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00D AND CHARCOAL IN MALL (WEST AFRICA)

account for more than 9U0% of domestic energy

{Nouvellet ev al. 20000, and the tree formations
(mainly savannas) are thus subject o a high level of exploi-
tation. Since 1998, the govermment i Mali has encowraged
the creation of so-called “rural markews (or fuel wood.™ and
these rely on the defimtion ot & management plan for village
forests. that in turn requires an assessment of the wood
stock, Classical inventory techniques are difficult 10 use in
dry savannas because ol the shruh aspect of the trees (small
rees. many stents on cach stump. curved shape of the stems
with many ramifications. etc.) Morcover. budgets available

for forest inventory are small, and the operators in charge of

the iventories are rarely well rratned.

All these considerations have led in Mali 1o distance-
based torest inventory methods (Kouvaté 1995, Sylla 19971,
thut are supposcd to be casy and fast to apply (Lindsey ctal.
1958, Lessard et al. 2002, Lynch and Rusydi 1999). Figure
I pives the distances D, the most frequently measured in

distunce-based methods. Let p be the fixed number of trees
in each sampling plot. and S(D} its variable area. We denote
as A the tree density. An estimator of the tree density is A =
p/S(D). The ditficulty is that the expected value of 1/5(D).
and thus that of &, depends on the spatial patiern of the trees.
A spatial pattern will be considered as the realization of a
point process (Cressie 1991, Stoyan and Stoyan 1994). Let

S0+, 0) be the density function of the distance D Tor a point

process with parameters # (among whiclh is the intensity A).
To estimate 8. authors generally use the maximum likeli-
hood cstimiator. or the m-order moment estimator that fol-
lows from

I & ’ )

> DT = J A B d
M ‘

i i}

where Dy, .. .0 D, is asample of size # of D, For homoge-
neous Poisson process with intensity A. the expected value
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Figure 1. Distances most commonly measured in distance-
based methods: (a) X, is the distance from the sampling point
to the pth nearest tree (here p = 4). (b) Yis the distance from a
randomly chosen tree to its nearest neighbor. {c) Let A be the
nearest tree from the sampling point E; T is the distance from A
to its nearest neighbor in the half-plane that excludes E and
limited by the perpendicular to (AE) at A. (d) L is the distance
from sampling point E to the pth nearest tree in a transect of
fixed width that starts at E (here p = 4). (e} Q,, is the distance
from the sampling point to the pth nearest tree located in the
kth sector, the plane being divided into m equal sectors (here
m=4dand p = 2). (f) Zis the distance from tree A, to its nearest
neighbor A, ,, the trees A, ..., A,_, being excluded, and A,
being the nearest tree from the sampling point (here p = 3).

ol X0Vowhere X, is the distance from the sampling point o
the pth nearest tree {Figure la), is proportional o A~
(Stoyan and Stoyan 1994y, So. referring (o Persson’s (1971
classification, the  first-order moment estimator of  the
density for a Poisson process helongs o the type (/X1
the second-order moment estimator is of type (XX, and
the moment estimator ol order —2 s of type S(1/X7).
Morcover. for a homogeneous Poisson process. the maxi-
mum likelihood estimator based on X, ix identical, up o
multiplicative factor, to the second-order moment estimator.
Table 1 gives the most commonly found estiuators, cross-
g the type of distance measured (Figure 1) und Persson’s
(1971 classification.

Most of these estimators were designed for the Poisson
process. though some were designed for point processes that
generate regular grids (square. tnangular. hexagonal. ete. ).
whereas others were designed to be robust, However, 1o the
best of our knowledge. no estinuuor has been devated o a
puint process that generates clustered patterns. However,
trees in natural forest stands, and. in particular, in the uvee
savannas of Mali, generally have a clustered spatial pattern.
This study therefore aimed to define a tree density estimator
Tor clustered patterns: and test this estinuuor at six sites in
Mali. To reach this goal. the 1deal situation would be to use
a clustering point process that can be simulated and for
which the disiribution of the distance 1 is known. Unfor-
winately. we are not aware of such a process. Clustering
pont processes that can be simulated have untractable char-
deleristics, In contrast. the known distributions ol O for
clustered patterns correspond 1o point patterns whose gen-
criting processes are unknown (Eberhardt 1967). Some
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approximations therefore had to be made. We relied on the
family of Matérn point processes to generate clustered pat-
terns, and then approximated the distribution of’ D by known
distributions, A tree density estimator could then be de-
duced and was compared with other estimatoes given in the
lierature.

Material and Methods

Matérn Process

Matérn processes are three-parameler point processes
that generate clustered spatial patterns. The three parameters
conxist of dispersion distance R, density ol parent points w,
and meun number of daughter point per parent g, The
process is then defined as follows (Stovan and Stovan
1994): 1. Parent points are drawn according to a homog-
eneous Paisson process with density o2 2. Each parent point
i generates M, daughter points. where the M s are indepen-
dent and identically distributed according 10 a Poisson dis-
tribution with parameter w: 3. The M, daughters of each
parent point are uniformly distributed in the disk of radius R
centered on the parent point. The Matérn field is finally
formed by the union of all daughter points.

The density of a Matérn process with parameters (R. .
w)is A = wp. The key point in distance method density
estimation is the distribution function F, of the distance X,
from a random point 1w the pth nearest neighbor. The
analytic expression of £, for p = 1 is (Stovan and Stovan
1994}

Filx)=1-—exwp

R

palt, v, RY

5 dr.

-2
2T R

11 —expl —
[ Y
where a(r. v, £) 1s the arca of mtersection of two disks of
radius ¥ and R separated by a distance 1. The expression ol

« ix (Stoyan and Stoyan 1994)

alir R
7 min(r, R) fori=|r — R
rlarceos = w1 = 1) for|r = Rl < 1<R+r

+ R(arceosy — v N )

(} forr=R + (1) n
rF=r =R FHR -
e 2y "o 2R

Becuause we do not have any explicit expression of £ for
7 2, am approximate expression is derived. As noticed by
Eberhardt (1967). F, is defined by the law of the number of
trees in plots. because

Fx)=PriX, =x)= E pilx)y=1- N i, (2

Pop ¢



Table 1. The distance-based density estimators most commonly found in the literature.

Type of

Tyvpe of
Cuation Distance Estimalor
Maoore (1954 X, 1A X7

Morisita (1954)" — _
Batcheler (19719 — —
Diggle (1975, 1977 — _
Cottam and Curns (1950) — (Y Xy
Persson (1964 — .
Holgate (1965a) — —
Persson (1971) — —

Patil et al. (1979, 1982y — ather
Clayton and Cox (1986) - —
Moriaita (1954 X, X X7

Thowmpson (1956 — —
Keuls el al. (1963)" — —
Holgate (1964)" — -
Poilard (1971 - —
Sylla (1997 — —
Keuls et al. (1963 — NOXT)
Persson (1964) — —
Eberhardt (1967)" — —
Mawson ¢ 1968)" — —
Prodan (1968 — —
Pasandeh and EK (1986) —

Tonsson et al. (1992 — —
Lyneh and Rusydi (1999) — —
Lessard et al. (2002" — —
Morisita (1954 — ek
Thompson (1956) — —
Lewis (1975 — —
Pavandeh and Ek (1956) — —
Persson (1964) — olher
Lewis (19753 — —

Type ol Type of
Citation Distance Extimator

Holgate (1963b)" Y Y X
Diggle (1975, 1977 — _
Cotlam and Curtis (1956 — (Y X)°
Pallard (1971 i, LAY X7
Morisita {1954y — TAR e
Cotlam and Curtis (1956 — —
Catana (1963 — —
Mawson (1968)" O, LY X7)
Engeman et al. (1994y — —
Morisita (1957) — YK
Engeman et al. {1994)* — —
Mawson (1968)" — other
Kendall and Moran (1963 Z, 1A Xy
Cox (1976) —
Clayton and Cox {1980} — —
Cox (1976 — Nl
Cottam and Curtis (1956)¢ — BTANAYS
Clayton and Cox (1986)' — —
Clayton und Cox (1986) — other
Engeman et al. (1994)" Z, 1S X7)
Diggle (1975, 1977)* 2 eX X7)
Aherne and Diggle (1978 — —
Clayton and Cox {1986)' — —
Byth (1982) — (X Xy
Clayton and Cox {1980} — —
Engeman ot ab. (1994)! — —
Clayton and Cox (19%86)" — ather
Parker (1979)" L X A7)
Packer (1979)" — XK
Sheil et al. (2003)' — —
Smaltschinski (1981)" X, olher

The detition of distance types relers to Figure 1. The estimitars classification refers 1o Persson (1971).

S Estmator not hrased Tor o homogencous Poisson process,

hinamial distribution.

that generinte regular grids.

© Eognncal estiator
¢ Robust estimator

Robust estinuutor, of the type 1A X7 where o s a fixed coetlicient, ¢ -

" Estmator not biased Tor Polsson processes (homogencous or not) and selien the number of trees in a plol of any size Tollows g binonual or @ negative
Estimator based on the median of X0 An asymptotically nonbiased expression of this exists for the homogeneous Poisson process wd (or the processes

Fis the tvpe (172 07 ¢ = 2is the type TAY X7 and « = =2 s the type Yt [FAR

* Robust estimanor of A0 hased on i rank statistic, where £ is the denstiy Tunction ot Y

© Estimator ol 124 not hivsed Tor homogeneous Poisson processes.

Lstiator of /A not biased for hamogencous Poisson processes

" Estinator hased on truncuted distanees.

*OMunimum hkelihood estimatr of w homogencous Poisson progess,
" Estimator of the type THAZ, Q0]

where p(ayis the probability of finding { trees in the disk of

radius v centered on the orgin tor any other point). Then,
any approximate expression ol pday for a Matérn process
also detines an approxinate expression of £

An approxiniate expression of pv) was derived from
simulation data and empirical relationships. We simulated
512 Matérn processes for R values ranging from | to 8 m.
(or @ values ranging from 100 (0 800 ha™" and tor g values
ranging trom | 1o ¥ Lach process was simulated  10.000
times on a b-ha plot. and for each iteration we counted the
pumber of trees in 100 disks ranging from my™ = [ m” (o |
ha in size. For cach combination of (R, w. w) and tor each

value of v, we thus ohined a sample of 10,000 values Tor
the number of trees in the disk of radius x. An estmate ol

Estimator defined as a combination of the acithmete and harmome means ol N

Estimator of 174 not biased for the processes that generate regular grids esguare. tmangular. hexagonal, e,

pilx} was thus obtained for each of the 312 Matérn pro-
cesses. We then empirically noticed. like Eberhardt {1967).
that p,(x) was closely approximated by o negative hinomial
distribution with parameters (s &)

'tk + 1) mk’

= e 3
CiaTG+ 1 o+ b (4

P

where I' s the gamma function (Abrumowitz and Stepun
1964). The parameter s the mean number ol trees i the
disk of radius v, so that; m = Amd = (u,um':. The
relationship between the shape parameter & and the process
parameters (K, w, ) were empirically dernived from the
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simulation data by visuadl analysis and by testing virious
relationships. The resulting relationship s

k= (uy,+ aRiw ~ (a-fu) m. (4

where ay. ¢ and «, are constant coetlicients. BEquations
2—4 thus define an approximate expression of £, for a
Matérn process. Tt should also be noted that we do not know
the generating process of the point process whose distribu-
tion of X, would be given exactly by Equations 2—4.

The coctficients ¢, a,. and «~ were estimated from the
simulation data by nunimizing. for a given order p. the
guantity

S22 )
~ LE ey = £ s e . an) ] din

T

where the sum is over the 312 simulated Matéim processes.
g
process computed from the coelficients ¢, ¢,. ¢~ using
Equations 2—4. and F)" is the empirical distribution fune-
tion estimated from the sample of size 10.000 of X, for the

gth Matérn process.

is the distribution function of X, for the gth Matérn

Definition of the Density Estimator

The density estimator we propose is the maximum like-
lthaod based on a sample of the distance X, from a random
point 0 the gh nearest tree. The expression of the
likelihood is actually approximate, because it is based on the
approximate expression of the distribution function Fool X,
for the Matérn processes, [ {ollows from Equation 2 that the

cxpression of the log-likelihood for a sample vy, .. . v, of

size nol X, is

" ool
1

b= > Inl — Npivi|. (5)

)l It

Then follows {rom Equations 3 and 4 the cxpression of the
decivative p', of p, with respect Lo v It is actually more
convenient o compute the dernivative ol Infp, o], which
vields

(4R

l / s
it = pAvior’ etk + 1) — k) — ln[] + l
! ! lul K‘JJ

ety + e Kw ¢ 0 i
+ [ l] .6
m+k L

where W is the digamma function tAbrantowitz and Stegun
1964y and i’ = 2wpmyis the derivative of wr with respect
to x. Bquation 6 1s vahd Tor v = 0: moreover pA0) = 0. Let
(R. . 1) be the value of (R w, @) that maximizes S (v,

..... v,). Then the propased tree density estimator is A —
ma.

In practice, Equation 5 is maximized numerically. We
used the Nelder—Mead algorithm (Nelder and Mcead 1965)
in R software (R Development Core Team 2003). This
algorithin, like most optimization algorithms, requires some
initial values of B, w. and g When estimating density from

10 Forest Science 31edy 2003
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a simulated data set of a known Matérn process. it is of
course possible to use the true values of R. w, and g as the
inital values, However. the initial values may have an effect
on the numerical output. and a better simulation of field
conditions 15 obtained if’ we proceed as if the true values
were unknown, First. we used as an imtial density value wy,
that value given by the moment estimator of order —2 of a
Poisson process (see Equaltion 13). Let A < be this estimate.
Then. we used the simulation data to derive some empiricul
expressions for the initial values of R, w, and . For cach of
the 512 simulated Matérn processes, we computed the em-
pirical mean v and the empirical standard deviation & of X,
from its sample of size 10.000. We then constructed the
lincar regressions

’ﬁq = B(J + ﬁqu + ﬁunuf, : 61;- (7)
G, = oy + a0, Fop,FaR, e, (8)
where ¢ = |. 512 refers to the simulated Matém

processes. Once the coelficients of these regressions are
known, the imitial values of K. w, and p are obtamed for any
point process by solving it = B, + B - B,p o — o, +
w0+t aploand A, = wp, where s = (X7, x)in
and @ = [Xx, —

and variance of a sample v, .. .. ¥,

a2 .
)i = 1y are the esumated ncan
of X, This yiclds

1

s = [t = Bo = Uit = Bo)? = 4B, B.A V2B, (9)

Wy = A L. [§L0))]

il
R, =(d—a, — a,w,, = o,u, e, (rn

Because regressions 7 and 8 were constructed for a himiled
range of R, w, and g, the initial values of R, w, and p were
actually min[max(k .. 1. 8] (in m). minfmax(e,,,. 0.01.
(.08] tin m™ ) and min muaxp, ). %]

s

e

Study Sites

The distance method for estimating tee density was
assessed at six sites in Mali. West Africa (Table 2). One of
the sites (Amba) is located in the South Sahelian bioclimatic
range (Nasi and Sabatier 1988), another ( Woro) is located in
the North Sudanese range. and the four remaining sites are
located in the South Sudanese range. The vegetation ac all
the sites consists of tree savanna (Yangambn classification.
Conseil Scientifique pour ' Afrique 19561 A 30 x [00-m
permanent plot was located at random at cach site. The
species, girth, and spatial coordinates of all the trees and
shrubs with a base girth > 10 em were recorded. Spatial
coordinates were measured with @ tape after dividing the
plot ine 10 X 10-m subplots bounded by string. Plot
characteristics are given in Table 2: density ranged trom
198 10 1486 ha™ ' and basal arca ranged from 2.8 to 12.5
m~ha ' Rainfall explains the differences between the plors,
whereas, more locally, human activities had a marked im-
pact on plot characteristics,

A Matérn process was adjusted o each observed spatial
pattern. Its density was estimated as A = A/Wwhere Mis the



Table 2. Characteristics of the six study sites in Mali, West Africa

Longitude Latitude Pluviometry™ Density Basal area Species

Site W N nmm s r ha ! m-ha Richness
Amba RERICE 515 28() 1H¥ 28 7
Kokani 328 |22 SO0 600 10.9 30
Korakaoro 724 1245 T90 [BREH 3.4 29
Ndouantien T 127467 790 1486 7.3 38
Sokouni 708 12752 790 790 12.5 R
Woro 729" RISV 570 364 3.2 15

S Average from 1977 10 19870 data Trom the nearest mewrelogical sktion,

number of trees i the plot and W = 0.5 ha. The other
parameters were estimated using the  minimum-contrast
method (Stovan and Stoyan 1994), which 1s efficient and
takes advantage of knowledye concerning tree position.
This consists ol minimizing, with respect 10 K and e, the
quantity

[Kir)? = Kir. R, @) dr.

Yy

where 7,0 — 25 m. y = 0.25, Kis Ripley s estimator of his
K function (Cressie 1991), and K(r. R, w) 1s Ripley’s A
function for a Matérn process with parameters (R, w. 1. s
expression is (Stoyan and Stovan 1994)

|
Koo Row) = wmr +

w
24 (/827 — Darceos - — 2aresin 2
R SRV B Ll s Il B =
I (z=> 1,
where - = #/(2R). leshould be noted that K does nol depend

on w. This latter parameter is estimated as g = A

Comparison with Other Estimators

Several authors have compared the perlormance ol dis-
Lance-based estinmators with fixed-sized sample plot estima-
tors (Moore 1954, Lindsey et al. 1958, Holgate 1964,
Eberhurdt 1967, Pollard 1971, Engeman et al. 1994, Lessard
et al. 1994, Lvneh and Rusydi 1999 Lessard et al. 2002). In
all cases. distance-based estimators had o ligher standard-
ized root squared error than samiple plot estimators, Other
authors have made pairwise comparisons ot the perfor-
mance of distance-based estimators {Diggle 1975, 1977,
Cox 1976. Clayton and Cox 1986, Payandeh and ER 1986,
Jonsson et al. 19920 Engentan ¢t al. 1994, Engeman and
Sugihara 1998), Estimators of the type Y(1/XD) (Table 1)
were generally more robust than estimators ol the type
1A X7) (Persson 1964, Eberhardt 1967, Payandeh wand Ek
LOBO6, Jonsson et al. 1992), but the lower value of their bias
was compensaled by the higher value ol their variance.

The pertormance ol the proposed estimator &G was
assessed in comparison with distance-based estimators ree-
ognized i the literature as the most efficient. We in fact
followed the conclusions of three studies that encompassed
all the other comparative studies. Following Clavion and

Cox’s (1986) conclusions, we selected the three esnmators

As Ag. and A, proposed by these authors

n0.35 + 0.01 sl
(20 X2 2
N0 44 — 0.08nr:tu1

(X0 X2 T,

-

Ay =

. (045 — 0.08m, /n)

TS xS T
where X is the distance from the ith (within a sample of size
) sampling point. say £. to the nearest tree. say A (Figure
Ly, T, is the distance from A to s nearest neighbor in the
half-plane that excludes £ and limited by the perpendicular
w (AEY at A (Figure lc). Z; is the distapce from A 1o its
nearest neighbor (Figure 1), and i, a8 the number ol pairs
(X, Z,)or (X, Ty out of the nr measured pairs tor which Z, >
rX, or T, > rX,. Following Payandeh und EK's (1986)
conclusions, we also selected the moment estumator of order
—2 of a Poisson process (Keuts et al. 1963, Persson 1964,
Eberhardt 1967, Mawson 1968, Jonsson et al. 1992, Lessard
ctal. 2002)

(13)

where X, is the distance from the fth sampling point to the
pth nearest tree (Figure 1), Finally. following Engeman et
al.’s (1994) conclusions. we selected three more estimators:
Kendall-Moran’s estimator. the second-order moment esti-
malor Tor a Poisson process, and the variable areu transect
estimator. The Kendall-Moran estimator s defined
lollows (Kendall and Moran 1963, Engeman et al. 1994): let
A, be the nearest tree [rom the sampling point £, and let
A, (p = 1) be the nearest tree from A, disregarding A
ALy (Figare ) let Z, be the distance from A 10 A,
and finally let =f, be the area to explore to find A, This arca
is the area of union of the p disks centered at £, 4, .. .,

ds

A, oywithrudii X Z,, . Z,,_y. Then the Kendall-Moran
cstimator of order p is
. np — 1
AK.\I = 3 { ]4)
S i
Za e
Forest Screnee 3104 2003 I



The Kendall-Moran estimator is nol. strictly speaking. a
distance-based estimator because it cannot be computed
from mere distanee measurements. The second-order mo-
ment estimator tor a Poisson process is (Morisita 1954,
Thompson 1956, Keuls et al. 1963, Holgate 1964)

np — 1

a Y \"
2 o

i

where X, was defined previously (see defimtion ot A 51

The vanable area transect estimator is (Parker 1979, Sheil et
al. 2003

np — 1
A, = . (16)

WL,
|

where L, is the distance from the /th sampling poin say £
10 the pth nearest tree in o transect of width W that starts at
E (Figure 1d). In this study. we used W = 10m,

We thus selected seven estimators Tor comparison with
@ The four estimators A_y. A,y Ao, and A, are unbiased
for a homogeneous Poisson process. The variance ol the

latter three then equals A~ — 2). whereas the variance ot

A 5 then equals An(r — 2] As a comparison. the vari-
ance ol the fixed size sample plot estimator equals )\3/(11/;)
for a plot size such that the plot contains g trees on average.

The seven estimators (Equations 12-16) and the pro-

posed estimator o were compared on the basis of their

standardized root squared error (Diggle 1977).

plA) = (Ei[1A - 2]

JoAl - (BUAT

where (A1 1s the estimator standard deviation, and B(;\} I
s standardized bias (Diggle 197515
BiAY = E[1A — AMA] = E{/A — L.

The smatler ptA). the mare elficient A. The estimators were
also compared on the basis of the mean L‘\pkll';llit)ll arca
1u|u||u| at cach sampling point, For e\llﬂhll()l\ Qg As.and
A . this was the mean value of -r\ TOr Ay it was the
mean value of f < for X it was th mum value of WI - Tor
Ao, it was the lﬂt‘dll value of mMX™ + 271 — a(X. X. 7), whuc
« 1s given by Equation |z and, for A, and A-. it was the mean
value of wX" + T2y (Figure 1),

The estimators were compared on a benchmark of ten
reference point processes: the six Matérn processes corre-
sponding to the six study sttes. the Matérn process with

5. the Matérn
=5mow=00ha™" g = S the

parameters K = 2 m, o = 100 ha ' o=
process with parameters R
Matérn process with parameters B = | m. w = 500 ha ™'
@ = |.and the Poisson provess with intensity A = 500 ha ™'
Point process simulations were used rather than plot data
because the latter oftered limited sampling possibiliues, and
theretore limited data sets. Each reference peint process was
stmulated 10.000 times. and for each iteration the distances
required for the estimators were computed. These data were
partitioned into 200 samples of size 50. Thus 200 esnmates
Ale ooy Ay of the density based on a sample of size n =
50 were obtained for cach estimator and cach point process.
The standardized bias was then compuied as B = A7A — 1.
where A = (72,7200, and [he; standardized standard
deviation was computed as /A = \s‘)\2 — ATFA. where AT =
"[]1) /\ )/F)O()

Results

As suggested by Kouyatd (1995) and Sylla (1997), we
focus hereafter on the order p = 4. The estimators @i, A,
A .oand A, were thus assessed for p = 4 The
Kendall-Moran estimator was assessed tor p = 3 because it
appears o be of little practical use in the tield for p > 3. We
first present some characteristics of the proposed estimator
(parameter values, use with field daw. effect of sampte
size), and then make comparisons with the other estimators.,

Parameter Values

Al the order p = 4, the numerical values of the coefti-
clents . ¢, «- corresponded to a, = —16.4555 m o, =
209673 m, and g, = 0.9242. The results of regressions 7
and 8 from which the initial values of (R, m, gy were com-
puted. are given for p = 4 1n Table 3. Finally. Table 4 gives
the values of the paramicters (K. w, p) of the Marn pro-
cesses that best fit the observed spatial putterns at the six
study sites.

Example of an Estimation from Field Data

We first provide an example of a density estimation
using the proposed estimator and field data. These data were
eenerated from stem maps: all the wees recorded on a plot
were placed on v—v coordinates: sampling points were lo-
cated on a regulur square gnd with sides « within the

Table 3. Linear regression of the empirical mean m, and the empirical standard deviation «, of X, with respect to the parameters R,

w, and p of the Matérn point process, for 512 pracesses.

Coclficient Unit Estuimate SE T Pri |
B m 8.0505 L1559 x 107! 60.48 g
B, m' —54.1929 1713 #1071 —31.64 Sl
B, m S 4617010 ! 1713 # 107 —26.96 S (L
@, m 31407 4776 # 10 63.76 <1
y — —7.2432% 107 5879 x 10 ¢ —12.32 <1t
@, m’ —23.1092 5879 < a0 * —3931 <10 "
o, m — 1082410 S.879 > 1077 —18.41 So[i AN
For regression 7. R T4 Tor regression K. RS — N0
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Table 4. Values for parameters (A, w, p) of the Matérn pro-
cesses that best fit the observed spatial patterns at the six
study sites

K w o

Site m ha ! -
Kokani 247 494 1213
Sokouna 10.2 70 11,343
Korokoro 1.77 1.036 1.177
Ndouantien 2.36 630 2.304
Waro 1.93 229 [.380
1170

Amba 1.13 168

R s the dispersion distance. @ s the densits of parent poimts. and gos the
nmiean number of daughier points per parent.

coordinate system: the distance from cach sampling point o
the fourth nearest tree was also recorded. When dealing with
ticld data. 1t must be ensured that sampling points are
sufficiently spaced one from the other so that measured
distinees can be considered as independent, because a max-
imum likelihood estimator supposes that observations are
independent. I sampling points are oo close together, then
the distances will be positvely correlated.

Consider. tor instance. the plot at Ndouantien {we chose
the densest plot). The spacing ¢ between sampling plots was
varicd between [ oand 20 m. For cach spacing. the
correlation between the distance X, measured at a given
sumpling point and the distance measwred at the next sam-
pling point was computed. As expected. the correlation
declined as o increased. and stubilized around zero for ¢ =
8 m. The correlation was significantly positive at the 5%
level undl ¢ = 6 m (same result using both Spearman and
Kendall correlation coefficients). We thus elected a mini-
mum spacing of 8 m between sumpling points to ensure that
distince measurement were independent.

Spacing of 8 m resulted o sample of 55 distanees (we
removed all sampling points where distance to the nearest
plot border was tess than X ). The mean distance was 3.2 m
and its stundard deviation 1.3 m. The moment estimator of
order —2 yiclded the estimate A_, = 1730 ha™". The initial
values of w. w, and R were computed from these values

using Eguations 9-11. which produced: u,,, 7.987.

e — 1 <

<3

3 e ]

5 = —H---7 N A
2 =] «_ .- |Ndouantien
=]

©

5 o | T~ . |Korokoro
3 =

° =}

e

5] e emeeem ===~ - -----1S0Okouna
g w i
& o Jd T ——————— |Kokani
w o e - - |Wore

x

s

20 40 60 80 100
Sample size (n)

Figure 2. Empirical standard deviation « of the proposed esti-
mator @j times \Vn as a function of sample size n, at the six
study sites.

i = 216 ha™' and R, = 641 m. These initial values
were injected together with the samiple of 55 distances into
the Nelder—Mead algorithm to maximize the approximate
ltkelihood. Finally, estimates ol g, w, and R gave oo =
3353, =298 ha™' and R = 1.89 m (compare with Table
4). The resulting density estimate was @ = 1.594 ha ",
compared with the real value that was 1,486 ha™' (Table 2).

Effect of Sample Size

As the size n ool the distance sample increased. the
variance of the estimator @i decreased. whereas ils bias
remained approximately constant. Estimates of the @f stan-
dard deviation were computed for ditferent values ol 1 by
splitting the simulated sumple of 10.000 distances into
_10.000/n] samples of size n. where tv! iy the greatest
integer smaller than x. Figure 2 shows the estimated stan-
dard deviation (er) of @b times Vo for the ten relerence
point processes, as a function ol 1. This shows that N nor
wis approximately constant,

w

Estimator Comparisons by Simulation

Table 3 gives the numerical values for the standardized
toot squared error for cach of the eight estimators and for
each ol the ten benchmark point processes. The proposed
estimator @fi showed the Towest standardized root squared

Table 5. Numerical values for the standardized root squared error p{A) for each of the eight estimators and each of the ten benchmark

point processes

Process Wt Ao, A
Matérn (5. 100, 3) 0.1615 2176 0.3159
Mateérn (2. 1K 5) 0.3264 0.6337 0.3623
Matérn (L. 500 1D 0,204 (1.3446 1314
Poisson 1A = 300 0.0835 o921 0.0725"
Sokouni (01292 (L1490 (1302
Korokoro 0.1327 (31843 0.1306
Ndouanuen 01311 01718 0.2013
Kokani 0.1337 0.1774 0.1
Woro 0.1931 0.3421 0.1782
Amba 01444 04045 0. 1468

Estimator
;\KM A/' ’is /\n‘ ;\J
0.2349 0.4008 0. 1499 0. 1468 (11470
03111 0.3732 (14603 (1.5669 (1.5922
3.1232 0.1263 (1.3058 0.3127 (03213
0.0888° 0.0675" 02414 0.2231 .2201
0.2631 ().5858 0.1630 (). 1551 0.1547
0.1075 0.1348 0.1921 (1.1938 0.1983
0.1451 0.2085 0.1456 0.1540 0.1566
01125 0.1545 0.2188 0.2243 02293
0.1394 0.1872 0.3084 (L3160 0.3258
0. 1487 01434 ().3877 (3.39Y36 04063

' The theorencal bias s zero and the standardized stimdacd deviation is 17\ itp =2y where 1 — 50 und p = 4, giving p — o/A = 0.1,

" The theoretical bras is sero and the standardized standard deviaion is VN np = 20 where 0= 50 and p = 4 giving p = o/d = 00711

The thearetical mias is sero and the standardized standacd deviation s 1N g — 20 wlere o= S0 and p = 3, giving p = oA — 02,0822,
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error for the Matém processes at Sokouna and Ndouanticn,
An estimator with a lower standardized root squared error
than @ could always be found for the other processes. but
this varied from one process to another. Ruatios ol the
estimates provided by each of the other seven estimators
and the of estimator were computed tor each point process.
The mean value of the ratios over the 10-point processes
then provided an efficiency index. By construction. this
index was one for & The lower the index, the most
efficient the estimutor. The estimator @& came first and wils
followed by A,y (index of 1.06)., A, (1.25), A, (1531 A .
(1.58). A (1.64). A, (1 .67), and &, (1.70).

Table 5 is complemented with Figure 3 that plots the
standardized standard deviation versus the standardized bias
for cach process and each estimator. In this plot. the stan-
dardized root squared error is given by the distance from the
oriein. For a given estimator. the points corresponding to
the different processes more or less line up. The slope of this
line may be interpreted as a trade-off between bias and
variance: estimators with a small slope. such as ).\KM. f\l_ X,-_
tend to have a bigh bias but a small variance: estimators

with a high slope. such as A_ 5 or @, tend to have a small
bias but a high variance. The proposed estimator @i is
actually the one with the highest slope.

When considering the detailed characteristics of the
potnt processes. it may be noted that & is comparatively
cflicient tor strongly clustered patterns. Only  the
Kendall-Moran estimator performed comparably. The esti-
mator @ was characterized by a small bias. With the other
estimators. this bias could reach high values. For the Matérn
process with parameters (2. 100. 5). the standardized bius,
wus about 50% for three estimators. The estimulor @it was
also fairly efficient for the Poisson precess. A homogeneous
Poisson process with intensity A can be seen as the limit of
a Matérn process with parameters (R, w. Aey) as o — 0 and
wl — = (and thus K — %), Equation 4 then implies & — =,
From Equation 3. it can be compuled that lim, . pdx) =
m'e ™!, which is equal to a Poisson distribution with
parameter m. The estimator @i then converged toward the
maximum likelithood estimator of a Poisson process. equal
10 ;\3 X ap/tap — 1) (Monisita 1954). We can therelore
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Figure 3. Standardized standard deviation versus the absolute value of the standardized bias: {a) &, {b) A_p. {€) Ay, (d) Agps, (&) Ag,
{f) A5, (@) Ag, (h) A;. The ten points on each plot correspond to the ten benchmark processes. The distance from the origin gives the
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expect that. for a homogeneous Poisson process. the stan-
dardized bias of @i would be close to Hinp — 1) and its
standardized standard deviation would be close to up/|(npy —
[yynap= 2] Forn = 50 and p = 4. this gives 8 = 0.005 and
ath = 0.071.

Finally. Figure 4 compares the areas requiring exploration
to obtain the measurements for cach estimator. Estimators
@fi. Ay A 5.and A, required the largest arcas, estimators As.
Ae A required the smallest, and Ay laid in between,

Discussion

Estimators Comparisons

The proposed estimator @ had. on average, the lowest
stundardized root squared error tor the benchmark pro-
cesses. [t was followed by the Kendall-Morun estimator.
The efficiency shown by Ay, confirmed the conclusions
drawn by Engeman ct al. (1994). Conversely. the low efti-
cieney of A - was somewhat surprising because this esti-
mator 1s recognized for its robustness in the literature (Per-
sson 1964, Eberburdt 1967, Payandeh and Ek 1986, Jonsson
ctal. 1992, Lessard et al. 2002). The bias of A 5 noted here
does nou contradict Eberhardt’s (1967) result because his
demonstration of the nonbias ol A_, for a negative binomial
distribution with patameters s and & supposed that the
shape parameter A was independent of the size of the plor. In
the present case. k in fuct does depend on plot size (Equation
41 The estimator @fe showed a low bias (and a compara-
tively high variance), whereas /iK\l showed a small variance
(and & comparatively high bias). Very large samples (here
i = 50) would therefore be expected to show even better
behavior of @i as compared with the other estintors.

These results should nevertheless be tempered by several
considerations. First. the statistical efficiencies can only be

oy O
o |
1] faY]
o
T
z 0
O
g o v
o - L
g ]
Q
; U] ] ] b L A
5 24w AR
A A noa b AL g
o |lg & & & a4 & @
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t &8 L L b bcehesct T
g 5 g £ 35 €855 8g 9
a =} S = = TS TS o @
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~ ) o 3 = E—2M O
»ox 2 o v =
=z

Point process

Figure 4. Mean exploration area to obtain the measurements at
a sampling point, divided by p/A {p = 4), where A is the point
process intensity. p/A is the area of the plot on which, on
average, p trees would be found, so that the ratio is a “stan-
dardized” exploration area. The x-axis is nominal and simply
gives point process names. Black dots refer to @, Ay, and A_5;
white squares refer to A, white triangles refer to A, black
triangles refer to A, and finally white dots refer to A and A,.

compared realistically il the estimators require the same
cffort in the field. Field effort may first be assessed by the
lotal area inventoried (or the sampling rate). For a fixed
sample size (1 = 50 in the present case). it is sullicient to
compare the mean size of the sampling plots. Figure -4 thus
nmoderates the results of Table 5. A new efliciency esumate
may be defined as the product of the standardized error p”,
by the mean area (o explore at a sampling point (Lynch and
Rusydi 1999, Lessard et al. 1994). Again. for each point
process, the ratios between the estimates produced by the
other seven estimators and @f may be computed. and the
average of the ratios over the 10 processes provides an
elficiency index. In this case the Kendall-Moran estimator
came first (efficiency index of 0.90). and was followed by
G (1 by construction). A (1.59). A 11630 A5 (1720 AL
(1.83). A_, (2.74), and A, (5.12).

Field effort may beuter be assessed as the time required
lor the inventory, related to the cost of the inventory (Lind-
sey et al. 1958). The simulations presented here do not
address on this guestion. and the present study should thus
be completed by a held study where measurement times are
estimated. Nevertheless. it should be noted that A, A 5. und
@it required the same time because they reguired the same
measurements. At each sampling point. all three required
identification of the fourth nearest tree and measurement of
one distance. The estimators A5, A,. and A5 required iden-
tification of the two nearest trees and measurement of two
distances. Moreover, because it is more diflicult to measure
T than Z (Figure 1 ¢ and f), A, and A, would take longer than
As. whereas Ay is already more efficient than A, and A;. The
Kendall-Moran estimator is not, strictly speaking. a dis-
tance-based estimator because it requires the measurement
of an area. Thus. it sbould rather be associated with
surface-based estimators (Fraser 1977, Ward {991, Lowell
1997). At the order p = 3. Ay, requires the identification of
the three nearest trees and the measurement ol at least three
distances and three angles. [t may thus be expected 1o take
the longest time. Finally. A, requires the identification of the
fourth nearest tree. the measurement of one distance and.
probably the longest task, delimitation ol cach side of the
transect.

The second consideration tempering the results is the
limited variety of benchmark point processes used o com-
pare the estimators. Although the Matérn process group
olfers greal variability, from random to very clustered pat-
terns, and could be adjusted to all our sites n Mali. further
work is required to assess the estimator wa with other types
of clustering point processes. We may expect other estinii-
tors, in particular those developed by Clayton and Cox
(1986). to show ucceplable behavior in a wider range of
point processes than @, Thus. @ should not be used it the
wree spatial pattern is entirely unknown.

Finally, our results did not consider measurement errors.
The simulations did not take account of measurement crrors.
and again a tield study would be required for their assess-
ment. Measurement errors that inflate estimator variance are
likely to increase with the complexily ol the measurements.
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A and A, would therefore be expected to yield the largest
measurement Crrors.

Estimating Other Characteristics

This study focused on the estimation ol tree density,
Estimaling additional characteristics, sueh as basal area or
volume or qualitative quantitics such as the density of each
species. would require specitic approaches. The quantitative
or qualitative characteristics of a forest stand may be mod-
eled using a marked point process (Cressie 1991, Penttinen
et al. 1992y, the mark being cither gquantitative or qualita-
tive. In all cases. the “density™ m of the mark may be
estimated in a distance-based approach by a ratio of the
means (X, MAAX_, S(D ) or by a mean of the ratios
(1 X (M /SD ). where SED) s the arca of the sampling
plot computed from the distance 1. and M, is the sum of the
marks over the g wrees in plotic M; = X yn, o where i, s
the mark of the jth tree in the fth sampling plot.

To estimate tree density., one simply has w set i, = | for
all i and j: to estimate the density of a given species, one has
o set m, = 1 if the corresponding tree belongs o the
desired species. and {) otherwise: to estimate basal area. one
has to set my; equal to the basal urca of the corresponding
tree; ete. Estimators of the “ratio of the means™ type were
used by Jonsson et al. (1992} and Schreckenberg (1996) 1o
estimate quantitative characteristics. whereas estimators ol
the “mean ol the ratios™ type were used by Mawson (1968).
Prodan (1968). Jonsson ¢t al. (1992), Lessard et al. (1994).
Lynch and Rusydi (1999). For qualitative characteristics,
say a species, f; = M/p is an estimator of species frequency
in plot i and /= (X, M/tap) is an estimator of specics
frequency in the entire stand. The ratio of the means esti-
mator can then be written as fA. and the mean of the ratios
estimator can be written as (I/mE" , FA, where A =
Pl S(D O] and A, = piSN,) are estimators of total
density (all species). either at the stand level or at the plot
level. The approach thus consists of estimating total density
then splitting it up between species (Schreckenberg 1996).
An alternative would be to apply a density estimator, ignor-
ing the trees of the unwanted species. This can actually
esult in large distances to measure, unless truncated dis-
tance-based estimators are used (Batcheler 1971, Keuls et
al. 1963, Sheil et al. 2003).

The difficulty in estimating the density of a mark using
distance-based methods is that the dependence between the
marks and the location of the trees atfects the output. For
instance. consider the Tollowing pattern

o

repeated on a square grid, where black and white dots stand
for two species. Provided that the side of the grid is far
larger than the distances between trees within the pattern. an
estimate ol the species frequencies based on a sampling plot

with radius X, (Figure 1a) would yield fg = Voand f = .
whereas the true values are fg — Ys and f = Y5 Hence.

designing an unbiased distance-based estimator would re-
quire characterizing the departure from random labeling
(Goreaud and Pélissier 2003). Moreover. if the estimator is
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to be evaiuvated using simulated spatial patterns. o realistic
simulation of the marked point processes is required. This is
left for future work.

Conclusion

When considering Matérn point processes, the proposed
tree density estimator @f of the tree density is effictent in
terms of bias and variance. The Kendall-Moran estimator is
also etficient. This conclusion does not take account of field
ctfort or measurement errors. When the sampling rate is
taken into account. the Kendall-Moran cstimator is more
efficient than @ However, Agy requires more complex
measurements that take longer and the measurement errors
are larger. The extension of @ to estimate additional or
qualitative stand characteristics warrants further work.
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